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I. INTRODUCTION

Practical decisions are invariably made under conditions of uncertainty; i.e.
short of complete information. Indeed, decisions (whether large or small) are seldom
made with complete or perfect information. Intelligent decision making obviously
requires the availability of good information; the proper analysis of this informationm,
of course, is equally important. In the case of decision situations involving uncertainty,
the necessary information may have to be expressed in terms of probability; its analysis
would naturally require probabilistic concepts and modeling. Moreover, the criterion or
basis for decision, or choice of action, may have to be defined statistically, for
example, on the basis of maximum expected utility.

Often, the judgment and preference of a decision maker have an overriding influence
on the final choice of action. In some cases, no amount of formal analysis can really
influence the intuitive bias of a decision maker. Nevertheless, under conditions of
uncertainty, and in complex situations, there are certain analytical tools that may be
pertinent and useful for systematically synthesizing available information (even though
incomplete) and subjective judgment, taking into consideration any preference or bias
of the decision maker. The concepts and tools of statistical decision theory provide
the framework for these purposes.

A formal statistical decision analysis will depend on the acceptability of the
decision basis, {.e. decision criterion, as well as on the definition and measure
of consequence such as a utility function, used in the process. The implementation of
the decision concepts summarized herein, therefore, necessarily requires the establish-
ment of a realistic utility function appropriate for a given problem; for this reason,
the application of these concepts in real decision problems must be problem-specific.

In practice, decisions invariably involve a choice of an action from among a finite
number of feasible alternatives. A formal decision analysis, therefore, must include
the evaluation of the consequence or payoff associated with each of the feasible
alternatives.

In short, decisions can be made with or without any formal analysis; the intuition
and judgment of a decision maker often have overriding influence on his choice of altern-
atives. Under conditions of uncertainty, however, statistical decision theory provides
a systematic framework on which the decision making process may be intelligently carried
out. This involves the analysis of available information, including judgmental infor-
mation, and the assessment of the potential consequences of each feasible alternative
action. Perfect decisions (i.e. free of the possibility of a wrong action) should not
be expected even with an elaborate statistical analysis. A formal decision making
process only provides the framework for systematically analysing all available informa-
tion (including subjective judgments) and for consistently and objectively evaluating

the potential consequences, taking into consideration any preferential bias of the
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decision maker. Hopefully, the process will minimize the probability of a wrong choice
of alternative; at the very least, it may provide additional insight on the problem.

The basic concepts of statistical decision theory are presented; also, the
potential roles and applications of these concepts in strategic problems are emphasized.
Implementation of statistical decision concepts, however, is seldom straight-forward.
Invariably, innovative formulations and modeling of the specific physical problem will
be necessary; examples of these are illustrated with special reference to strategic
defense problems. As the numerical results will require extensive computer calcula-
tions, the illustrations are limited to the discussions of the principles involved and

formulations of the necessary models.




IT. BASIC STATISTICAL DECISION CONCEPTS

2.1 The Decision Model

Formally, a statistical decision model may be defined in terms of four major com-
ponents, as follows:
1. The feasible alternatives.
2. The possible outcomes associated with each alternative.
3. The probabilities associated with each possible outcome.
4. The consequence associated with each alternative and a given outcome.
All of these components may be portrayed conveniently in the form of a decision tree.
Figure 2.1 illustrates an example of a decision tree applied to a hypothetical target-
ing decision problem. The decision tree starts out with a decision node (square node
in Fig. 2.1), at which point the decision maker identifies the various feasible altern-
atives. In the case of the example problem of Fig. 2.1, the choices are
A
A
A

deploy a single large weapon

deploy several small weapons

acquire further intelligence data on the
enemy's site condition

For each alternative, there is a chance node (circular node in Fig. 2.1) which is

followed by several branches denoting a set of possible outcomes associated with this ‘

particular action. In this example, the uncertainty lies in the site condition of the
enemy’'s facility, which is assumed (for simplicity) to be either soft soil (61) or
hard rock (62). Presumably, a single large weapon would be more effective in destroying
a hard rock site,whereas several small weapons will be more cost-effective for a soft
soil condition. 1In alternatives A1 and A2 the probabilities of encountering soft soil
or hard rock may be assessed using available geological information combined with judg-~
ment; these are indicated at the respective branches as 0.3 and 0.7 in Fig. 2.1. 1In
this example, these probabilities are assumed to be invariant with weapon types. Observe
that the outcomes at each chance node are mutually exclusive and collectively exhaustive;
consequently, the probabilities associated with all the possible outcomes at a chance
node should sum up to unity.

A third alternative, A3, is included in the decision tree of Fig. 2.1, which
involves acquiring futher intelligence data on the enemy's site condition. Depending
on whether the intelligence data indicates soft soil (zl) or hard rock (22), the decision
maker will have to make a decision at node B as to which weapon system to use. Since
the intelligence data may be subject to error, the possible outcomes of the subsequent
branches will still consist of 81 and 62. However, the probabilities of 61 and 02 will
obviously depend on whether the intelligence data favors one or the other outcome. For

example, if intelligence data indicates soft soil (i.e. zl), the probability of actually

encountering soft soil at the site will be high, but not necessarily equal to 1.0.




Decision State of Nature: Preference Utility
Alternatives (site condition of Ranking Measure
enemy's facility)

8, Soft soil 0.3 E3 50
A Single large—_ﬁ
weapon .
8,: hard rock 0.7 E 80
2
6]: soft soil 0.3 E1 100
AZ: Several small
weapons .
62. hard rock 0.7 E 0
4
B
61 0.632 55
A
Sl 0.368 75
2 —————
Z : Indicate 8 ‘
1 0.38 1 el 0.637 95
Ay
A,: Additional ez 0.368 -5
Intelligence
el 0.097 55
44,
22: Indicate 62 e2 —0:903 75
0.62
9 0.097 95
] —t
)
92 0.903 -5

Figure 2.1 A decision tree example
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Therefore, conditional probabilities are required here to account for the reliability
of the intelligence information.

The consequence associated with each "path" (i.e. a given action combined with
a specific outcome) may be measured in terms of a "utility". 1In general, each path
will have its own utility measure as indicated in Fig. 2.1. The utilities for the
various paths in Fig.2.l were evaluated with the procedure outlined in Appendix A.

The basic decision in the decision tree of Fig. 2.1 is between alternatives A1
and A2. There are, therefore, essentially four paths that must be ranked in order.
The objective of a targeting decision, of course, is to destroy an enemy installation
with the optimal weapon. In this regard, assume that a number of small weapons will
have maximum destruction if the site of the enemy's installations is of soft soil,
whereas using a large weapon on a soft-soil site will result in overkill. With this
consideration, the different possibilities are ranked in order of preference as shown
in Fig. 2.1, such that El > E2 > E3 > EA’ in which the symbol > means "is preferred
to”.

A relative utility value of 100 is then assigned to E, and O to E

1 4; i.e.,

100
0

u(El)
u(E4)

The relative utility values for EZ and E3 are then evaluated by the lottery schemes

of Appendix A as follows:

The objective here is to determine the relative utility values for E2 and E3 in

such a manner that consistency is maintained. For this purpose, consider two lotteries;
in one there is certainty of obtaining EZ’ whereas in the other there is a probability

p of obtaining E. and corresponding probability (l-p) of obtaining E Clearly, if

p = 1.0, the secind lottery would be preferred; whereas, if p = 0 th: first lottery
would be preferred. Therefore, at some probability p, the two lotteries would be
indifferent to the decision maker. Suppose that this is at p = 0.6 and (1-p) = 0.4,
as shown in the following sketch.

2006 E

1.0

0~ EZ ~ .

d 0.¢

The utility value for E2, therefore, is

u(E2) =p u(El) + (1-p) “(Eb)
= (0.6 x 100) + (0.4 x 0)
= 60

Similarly, the indifference lotteries for determining the utility for E, may be
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formulated. In this case, suppose that the probability p = (1-p) = 0.5. The indiffer-

ence lotteries for E3 is, therefore, as shown below.

1.0 E

On the basis of the latter lottery, the corresponding utility value for E3 is,

u(E3) = p u(E,) +(1-p) u(E,)
(0.5 x 100) + (0.5 x 0)
= 50

It may be observed that the relative utilities between E2 and E3 are consistent

in accordance with the preference ranking of E2 and E3. However, consistency must be

further verified relative to the utility values of El and E4. For this purpose,
consider other pairs of lotteries; for example, a lottery with certainty for E2 and
another lottery with probabilities p and (1-p) of obtaining El and E3, respectively,

as follows:

1.0 E

/w

Ey

In this case, suppose that the indifference probability is p = 0.55 between the two

lotteries. Then, the new utility value for Ez becomes

u'(EZ) = (0.55 x 100) + (0.45 x 50) = 77.5

Since u(EZ) # u'(EZ), there 1Is inconsistency in the assignment of relative utilities

up to this point.
The entire process may be revised using the following indifference lotteries.

1.0




1.0

On the basis of the above lotteries,

80

U(EZ) (0.8 x 100) + (0.2 x 0)

(0.5 x 100) + (0.5 x 0)

50

[}

u(E3)

Again, to verify consistency consider the following indifference lottery:

0.0 g

1.0

0,“

The new utility value for E2 then becomes

W'(E,) = p u(E)) + (1-p) u(Ey)
(0.6 x 100) + (0.4 x 50)

= 80

Therefore, u(Ez) = u'(EZ). Hence, complete consistency has been achieved.
The utility values for the four paths, therefore, are:
u(El) = 100
U(EZ) 80
u(E3) = 50
u(EA) =0

o

These utility values are also shown in Fig. 1.1 for the first four paths corresponding
to alternatives A1 and A2.

With regard to the paths associated with alternative A3, the relative utility
values should include the cost of acquiring the additional intelligence information.
A cost of five utility units is assumed for this purpose. On this basis, the relative
utility values for each of the paths associated with altermative A3 can be obtained
by deducting five units from the utility values of the corresponding paths associated
with A, and A, obtained earlier. The results are then those shown in Fig. 2.1.

1 2
Generalizations -- The exact configuration of a decision tree will depend on the

specific problem. Some trees may have many alternatives whereas others may have many
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different possible outcomes. Moreover, instead of discrete branches representing the
possible outcomes from a given action, a continuous spectrum of outcomes may sometimes
originate from a chance node, such as the possible outcomes defined by the value of a
continuous random variable. An alternative could also consist of a sequence of actions
and feedbacks, such that the outcome following an earlier action would affect the
decision at a subsequent stage. This latter analysis is called a "sequential decision"
process and may be represented as a series of decision nodes, branches, chance nodes,

etc. in a decision tree.

2.2 Decision Criteria

A formal decision analysis requires a criterion for choice; i.e. a rule for
determining what constitutes a '"best decision". 1In this regard, it may be observed
that the pay-off values (i.e. utilities) associated with each path depend on the
particular outcome which are generally not known deterministically; otherwise, the
decision-maker would obviously choose the alternative with the highest utility value.
Having constructed and completed the decision tree, there will be multiple utility

values, ul, u ceay un, each associated with a particular set of action and outcome,

’
and the correiponding probabilities Py» Pys «res P respectively. This 1is, of course,
a characteristic of decisions under conditions of uncertainty. Depending on the
temperament, experience, and degree of risk aversiveness of the decision maker, the
"best decision" may mean different things to different decision-makers, and at different
times. Nevertheless, certain criteria for decisions may be described as follows:

1. Mini-Max Criterion -- This criterion would suggest that the best decision is

the alternative that will minimize the decision-maker's maximum possible loss (or
negative utility). In this case, the decision-maker would never venture into anything
that may give him substantial positive utility (even though with high probability) as
long as there is a finite chance for a substantial loss. This is a pessimistic
approach.

2. Maxi-Max Criterion -- With this criterion, the best decision will be to select

the alternative that will maximize the decision-maker's maximum possible gain among the
alternatives, irrespective of the probability of achieving this maximum gain. Basically,
this is an optimistic approach.

The mini-max and maxi-max approaches suggest that decisions are to be made solely on
the basis of the utility values; in particular, both approaches ignore the probability
values associated with each of the utility values. As a consequence, a considerable
amount of information is wasted; moreover, in the long run both the mini-max and maxi-
max criteria may accumulate substantial losses.

3. Maximum Expected Monetary Value Criterion -- If the attributes associated with
each path in a decision tree can be expressed purely in terms of monetary values, the
monetary values of various branches for an alternative could be weighted by their

12




respective probabilities to obtain the expected monetary value of the alternative; thus

2.1)

Eddy) = i Py

.t .
where dij denotes the monetary value of the j h branch associated with alternative i, and

pij is the corresponding probability. The best decision then is to choose the alterna-

E = d 2.2
(dOpt) Max (§ Piy ij) 2.2)
i3]
4. Maximum Expected Utility Criterion -- In the event that monetary value is not
the only measure of value (as in the case of a risk aversive or risk affinitive decision-

maker), or if the attributes describing the value of each path in a decision tree

involves non-monetary attributes, a more general approach would be to use utility uij

to denote the consequence associated with a given path. 1In such a case, the optimal

decision would be to choose the alternative with the maximum expected utility; i.e.

E(uopt) = M?x (? pijuij) 2.3)
where u, is the utility of the jth branch associated with alternative i.

It may be emphasized that the utility approach described above already accounts
for the risk aversiveness of most decision-makers for avoiding, whenever possible,
disastrous outcomes; this is accomplished through the assignment of the appropriate
utility value or developing the appropriate utility function. Therefore, based on
the maximum expected utility criterion, the decision-maker chooses the alternative that
would be reasonably acceptable over a wide range of possible outcomes, by properly
balancing the true value (gain or loss) of various potential outcomes against their

probabilities of occurrence.

2.3 Analysis of a Decision Tree
A basic decision tree consists of one decision node, such as that shown in Fig. 2.2.
If the maximum expected utility criterion is used, the expected utility value of each
alternative is first computed according to Eq.2.3 at each chance node, from which the
alternative with the maximum expected utility value is the optimal alternative.
Sometimes, a second or subsequent decision is required depending on the outcome
of the first decision; in such cases, there will be more than one decision node in a
decision tree. An example is shown in Fig. 2.3.In this case, the analysis starts
from the right by first identifying the sub-trees, such as B and C as shown in Fig. 2.3.
The expected value of each alternative in all the sub-trees are subsequently computed.

Assuming that the maximum expected utilities are u, and Ues respectivelv, for sub-trees

B
B and C, the corresponding optimal alternative may then he identified. this point,

13




Figure 2.2 Decision tree with one decision node

Figure 2.3 Decision tree with subtrees

14




T ————— - -

the decision tree may be simplified as shown in Fig. 2.4, where ug and ué

represent the utilities of the entire sub~trees B and C, respectively. The expected
utility of each alternative at node A may then be computed and the optimal action
selected accordingly.

In a large decision tree, where several decision nodes could appear in a single
branch, as in the case of sequential decision analysis, the process of sub-tree analysis
will be repeated several times, moving from vight to left and advancing from one
decision node at a time. Once this backward analysis is completed, the decision process
will start from the left. First, the optimal alternative is selected at stage 1;
depending on the specific outcome of this first action, the process moves to stage 2.
From the results of the backward analysis, the optimal alternative at each decision node,
presumably has been identified (as marked in bold lines in Fig. 2.5). In particular, it
involves the predetermined optimal alternative at the decision node in this stage
(namely, stage 2). Again, depending on the specific outcome at the chance node at this
stage, the decision process moves on to stage 3, at which point another predetermined
optimal alternative may be selected.

Four types of analysis may be involved in a formal statistical decision analysis;
namely:

(1) Prior Analysis -- Literally, a prior analysis involves the calculation of the
probabilities and utility values for each path in a decision tree based on existing
information and prior assumptions. Any alternative requiring the acquisition of
additional information, therefore, will not be included in a prior analysis.

(2) Terminal Analysis -~ This involves the analysis and re-evaluation after the

necessary experiments or data-gathering schemes have been performed and completed. The
probabilities of the possible outcomes are updated accordingly; the remaining analysis
are then similar to those of the prior amalysis.

(3) Preposterior Analysis -- This primarily addresses the question 'should
additional information need to be gathered?", and if so which scheme should be used.
The decision tree shown in Fig. 2.3 is typical of problems involving preposterior
analysis.

(4) Sequential Analysis ~- This consists of several decision stages; at each stage,
a decision is made on the basis of the observed rcvsults of the previous stage. A
typical decision tree for this analysis is shown in Fig. 2.5.

The general approach for each of the various analyses described above have been
outlined in the previous sections.

Example

The decision tree shown in Fig. 2.1 requires prior as well as preposterior
analyses; the latter is associated only with alternative A3 which requires the
acquisition of additional intelligence information before selecting an action, whereas

the analysis associated alternatives A1 and A, are strictly prior analysis,

2
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Stage |

Figure 2.4 Simplified decision tree

Stage 2 Stoge 3

Figure 2.5 Sequential decision analysis
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Based on the probability and utility values shown in the decision tree of Fig. 2.1,
which are based on existing information and initial assumptions, the expected utilities

for alternatives Al and A2 are, respectively, as follows:

0.3 x50 +0.7 x8 =71

E(UAl)

0.3 x 100 + 0.7 x 0 = 30

E(y, )
Ay
If no further intelligence information were to be gathered, the maximum expected
utility criterion would suggest using alternative Al (i.e. deploying a single large
weapon in the attack).

However, if the acquisition of additional intelligence information is a viable

option available in the decision process, the preposterior analysis for alternative A3
would proceed from the right of the decision tree as follows:
If the additional intelligence data is 23 (favoring el), the probabilities are

calculated as follows:

E(U, |2 0.632 x 55 + 0.368 x 75 = 62.36

1

1

E(UAzlz

l) 0.632 x 95 + 0.368 x (-5) = 58.20

whereas if z, is the outcome of the additional intelligence gathering, then

E(U, |z
A

2) 0.097 x 55 + 0.903 x 75 = 73.06

E(U, ]zz) = 0.097 x 95 + 0.903 x (-5) = 4.70
2

implying, therefore, that alternative A1 (using a single large weapon) would be the
preferred action at node B of the decision tree irrespective of the outcome of the
additional intelligence gathering. Therefore, the expected utility for action A3 is
(refer to Fig. 2.1)

E(UA ) = 0.38 x 62.36 + 0.62 x 73.06 = 68.99
3

Since E(UA ) is slightly less than the expected utility of Al, the optimal decision,

therefore,3is to use a single large weapon in the target plan. In this example, the cost

of intelligence gathering was assumed to be -5 utility units; according to the above
analysis the additional information is not worth the cost. Of course, if the cost of

intelligence is much less than -5 utility units, then it may be worthwhile to acquire

additional intelligence information before choosing a weapon system; i.e. alternative

A3 may become optimal. 4
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2.4 Procedure and Requirements in Implementation

As indicated earlier, a statistical decision analysis will consist of the follow-
ing components: (1) the identification of the feasible alternative actions that
require further analysis; (2) the identification of the possible outcomes associated
with a given action; (3) the assessment of the probability of occurrence of each of the
possible outcomes; (4) the evaluation of the utility associated with each path (i.e. an
action and a given outcome).

Identification of Alternatives -- In identifying the feasible alternatives for

further decision analysis, one should not simply exhaustively list all the possible
actions that may be available. Often, there are options that are clearly not practically
feasible or viable; such possible actions are therefore r-t feasible alternatives. By
eliminating the obviously infeasible alternatives, iae feasible alternative actions are
usually limited in number; these are the ones thst require more careful analysis.

Among the feasible alternatives, there may ke thos: that require the acquisition
of additional information prior to a final decis?s . 1In this latter case, the additional
information may involve the use of consultarc¢s, or (iie performance of a field or
laboratory test; the latte may also involve decisions on the choice of a test plan.

In the case of a sequential or staged deciston process, the alternatives at a ‘.
subsequent stage may be different from those ot the earlier stage. As new information
and developments are made available, the available alternatives may change -- the
feasible alternatives at an earlier stage may become infeasible at a later stage;
conversely, other possible actions which were not feasible at an earlier stage, may
become feasible at a later stage.

The Possible Qutcomes -- In a well~defined problem, the possible outcomes result-

ing from a given action should be exhaustively identified. Oftentimes, however, the
possible outcomes may not be obvious; for example, they may depend on the opponent’s
strategy which may not be fully revealed until it is too late. In such cases, of
course, the exercise of sound judgment in the identification of the possible outcomes
is important.

In the event that the occurrence of a set of possible outcomes is controlled by
another process which may be random, an additional chance node could precede the
first one, denoting the two levels of outcomes possible in this case. As an example,
the parameters of a probability distribution of a random variable may be unknown;
thence, the probability of occurrence of a specific value of the random variable will
depend on the value of the parameter which is itself a random variable.

Assessment of Probabilities -~ Clearly, if more than one outcome is possible

subsequent to a given action, the probabilities of occurrence of the various outcomes
are important. 1t may be emphasized that the probabilities are important to denote
the relative likelihoods of occurrence of the various possible outcomes, and therefore

is the main characteristic of decision making under conditions of uncertainty. The
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required probabilities are necessarily estimated or calculated values, which may be
evaluated on the following basis:

(1) Based entirely on past observed data-- In this instance, the probabilities
of future occurrences of the possible outcomes will be based purely on the statistical
observations of the past. The validity of this approach will require a large set of
observed data, which is very rarely the case in practice.

(2) Based on subjective judgment of the decision maker -- In this case, the
estimated probabilities are purely subjective; consequently, rigorous justification of
such probabilities will obviously be difficult. The validity of such probabilities
must rely on the quality or credibility of the judgment of the decision maker.

(3) Based on the combination of observed data and subjective judgment —- The
Bayes' theorem is the vehicle for combining the two types of informationm.

Specific methods have been suggested for extracting subjective probabilities;
these include the following:

(1) Use of a probability wheel (Spetzler and Stael von Holstein, 1972) and
repetitive questioning until the indifference of two lotteries is achieved.

(ii) Establishing the subjective distribution of a random variable by the fractile
method (Raiffa, 1968; Schlaefer, 1969), in which the range of a random variable is
divided into two equally likely halves, each of which is then subdivided further; the
process continues until the required accuracy of the probability calculations in the
distribution tail regions is achieved.

(iii) The probability distribution over a given range may be assumed; this could
include the uniform and triangular distribution, the latter distribution could be
specified with various degrees of skewness to reflect the relative likelihoods over
the range.

(iv) Finally, the Delphi method may be used if the subjective judgments and
opinions from a group of experts are available. Essentially, this involves the
repeated up-dating of individual opinions and estimates in light of the opinions and
judgments from the others in the group. In addition to the subjective assessment of
probabilities, the Delphi method may be used also for evaluating and assigning utility
values.

In order to combine subjective judgment with available data, the probabilities
initially obtained on the basis of judgment may be updated in light of the available
data; the updating process may be performed on the basis of the Bayes' theorem. Such
3 in Fig. 2.1; the probabilities
available for assessing the reliability of the experiment may be expressed as P(zzlej)

a situation would occur in the case of alternative A
which is the probability of the experiment yielding the outcome z, given that the

actual outcome is ej. Since conditional probabilities P(ej[zl) are required, the

Bayes' theorem yields
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P(z,|0) P'(8.)
= 1 J
P(ejlzl) = 3 (2.4)

] P(leej) P‘(Gj)

where P'(ej) is the prior probability of ej which may have to be assessed purely on the
basis of judgment, and P(ejlzl) is the updated probability of Bj following the
result of the experiment 2z

yield z

0" Furthermore, the probability that the experiment will

% is given by the theorem of total probability as follows:

P(z)) = I P(zQ]e

Y P'(8) (2.5)
3 J

h|

In the absence of experience or other judgmental information, a diffuse prior
probability may be assumed; this implies that P'(ej) is constant for all j. Therefore,
no specific bias toward any particular outcome is implicitly assumed with the diffuse
prior distribution. A further application of the diffuse prior will be discussed in
the section on Bayesian sampling theory.

It might be emphasized that in practice, available observational data is invariably
insufficient for decision making purposes, whereas decisions made entirely on the basis
of subjective judgment may be difficult to justify and accept. In practice, therefore,
some combination of subjective judgment combined with available prior information and
observational data is invariably the most viable approach to the calculation of the
probabilities for decision making purposes. 1In short, available information should be
used to its fullest extent, supplemented with good judgment and reasonable assumption
whenever necessary.

Example

To illustrate the updating process implied in Eq. 2.4, consider the alternative A3
of the example discussed in Fig. 2.1.

Suppose that the reliability of the intelligence information is 80%; i.e.
P(zllel) = 0.8 and P(22[62) = 0.8. Conversely, this also implies that P(zllez) =
P(zzlel) = 0.2,

With the prior probability estimates (i.e. may be based purely on judgment) of
P'(el) = 0.3 and P'(ez) = 0.7, Eq.2.4 yields

P(—z}lel)i' (8))

P(ellzl) = — : :
P(zllol) P'(B)) + P(zllez) P'(8,)

0.8 x0.3

0.8x0.3+0.2x0.7

0.632
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and, P(ezlzl)

1- P(ellzl) = 0.368

Similarly,
A}
P(zzlﬁl) P'(8,)
P(ellzz) = —
L} ]
P(zzlel) P'(8)) + P(zzlez) P'(8,)
B 0.2 x 0.3
T 0.2 x0.3+0.8x 0.7
= 0.097
and, p(ezlzz) =1 - P(ellzz) = 0.903

Also, in light of the intelligence data, the probabilities of soft soil or hard

rock conditions (i.e. z, or 22) would be calculated according to Eq. 2.5 as

1
follows:
- \] L}
P(z;) = P(z;]6)) P'(8)) + P(zy]0,) P'(8,)
= 0.8 x0.3+0.2x0.7
= 0.38
and,

P(z,) = P(z,[0)) P'(8)) + P(z,(8,) P'(6,)

0.2 x 0.3+ 0.8x0.7

0.62
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ITI. UTILITY AND UTILITY FUNCTION

3.1 Utility Measure

Aside from the calculation of the probabilities in a decision tree, the other
important requirement is the evaluation of the utility values associated with the
various actions and outcomes in a decision tree. For this purpose, a utility function
would generally be needed. Unless the consequence of a given action can be expressed
purely in monetary terms, a utility function would need to be developed; such a utility
function must be suitable for the specific problem under consideration.

The importance of a proper and realistic utility function is central to the appli-
cation of statistical decision theory. Indeed, the significance of decision theory to
practical problems will depend heavily on the successful formulation of realistic and
viable utility functions.

A proper utility function must necessarily be problem-specific; it would depend
on the gain parameters or loss parameters pertinent to a given problem. For this reason,
no single utility function or type of utility function can be applicable to all problems.
Nevertheless, there are certain attributes that may be useful to a large class of prob-
lems, which may be identified as follows:

1. Utility in Terms of Monetary Value ~-- For a class of problems, the payoff or

consequence from a given action and possible outcome may be expressed in monetary terms.
All tangible and intangible attributes are assigned monetary values. In this regard
assumptions and value judgment may be necessary for evaluating or assigning monetary
costs to all potential consequences, including the cost of a fatality or the cost per
unit gain of information.

2. Consequence in Terms of Utility Value -- Monetary value may not be a suitable

measure of cost or payoff. For this reason, the concept of utility may be appropriate
as a more general measure of payoff, and also for combining several types of attributes.
In this regard, two approaches may be considered:

(1) Denote the consequence of each path (i.e each alternative and a given outcome)
by Ei' Rank the results Ei's in terms of the preference of the decision-maker such
that E, > EZ > oo > E where > denotes "is preferred to” and n is the number of paths
in the decision tree. Assign the utility values of 1 and 0, respectively, to El and En.
Conduct an inquiry (see Appendix A) perhaps hetween the decision analyst and the decision
maker, in order to establish a consistent set of utility values for all the other paths
Ei’ for i = 2, 3, ..., n-1.

(11) Alternatively, i1f a scale measure already exists with a specific attribute,
such as time or fatalities, or monetary value, a utility function may be established
to transform all the different scales into a uniform utility scale. The reason for
this transformation is that the original individual scales may not be consistent with

the decision-maker's preference. For example, a fatality of 200 may be more than twice
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the consequence of a fatality of 100. Considerations such as these may be introduced
and should be considered in the fommulation of the proper utility function. A procedure
for developing such a utility function is summarized in Appendix B.

For a decision problem involving only one attribute, the utility function described
above is sufficient for assigning or evaluating the utility value for each path in a
decision tree. In a typical case, however, several attributes may be involved. In these
cases, a joint (or multi-attribute) utility function is needed for evaluating the
expected utility of an alternative action. The determination or formulation of a joint
utility function (see Raiffa, 1969, Fishburn, 1970), could be cumbersome especially
when the number of attributes becomes large. Assumptions such as the concept of prefer-
ential independence and utility independence are often invoked to simplify the assessment
and formulation of joint utility functions (Keeney, 1972).

3. Consequence in Terms of Cost-Effectiveness Ratios -- In certain decision prob-

lems, the attributes may involve monetary costs and another attribute; the latter may

be the number of fatalities saved (in the case of an enemy attack) or the amount of
information géined (from performing an experiment), or the damage imposed on an enemy
installation (in the case of targeting). In such problems, a suitable measure of utility
may be expressed in terms of the unit cost per fatality saved, or unit cost per unit of

information gained (e.g. from an experiment).

3.2 Common Types of Utility Functiouns

Most utility functions are convex; this means that the marginal increase in
utility decreases with increasing value of an attribute. The preference behavior of
a decision-maker exhibited by a convex utility function is commonly referred to as
"risk aversiveness'. Most people are risk aversive to a certain degree; some may be
more risk aversive than others. The mathematical forms of utility functions commonly
used to model such risk aversive behavior would include the following:

1. Exponential Utility Function:

Yx

U(x) = a + be (3.1)

where the parameter y is the measure of the degree of risk aversion, and a and b are
normalization constants. If the utility function is normalized such that U(0) = O

and U(l) = 1, then the normalized exponential utility function becomes

=
U(x) = (1-e= %) (3.2)
l-e Y
2. Logarithmic Type:
U(x) = a &n(x+B) + b (3.3)

where B is a parameter, generally corresponding to the amount of capital reserve of
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the decision-maker; i.e. as B increases, the decision-maker has more utility to spare
(such as money), and he becomes less risk aversive. A normalized logarithmic utility

function may be shown to be:

V) = === [me+®) - n 5] (3.4)
ln(“zf)
3. Quadratic Type
U(x) = a(x - 1/2q x°) + b (3.5)

where a is the parameter related to the degree of risk aversion. A normalized quadratic

utility function may be shown to be:
D S O S
U(x) = iZo/2 (x - o x ) (3.6)

The degree of risk aversiveness of a decision-maker is measured by the "risk ‘

aversion coefficient,"”

e
L4

u'(x
l(x

|

r(x) = - 3.7)

~—

(=4

where the prime (') denotes derivative with respect to x. This coefficient measures

the negative rate of change in curvature of the utility function with respect to a

unit change in the slope of the utility function. For the exponential utility

function, the risk aversiveness can be shown, using Eq. 3.2 in Eq. 3.7, to be a constant;

i.e.

r(x) = vy. (3.8)

Applying Eq. 3.7 with Eqs. 3.4 and 3.6, the coefficients of risk aversion for the

normalized logarithmic and quadratic utility functions can be shown to be, respectively,

r(x) = — (3.9)
X

and,
(3.10)

r(x) = 1-ax

which are both functions of x.
Observe that the coefficient of risk aversion does not vary with the attribute

in the case of the exponential utility function; whereas in the case of the logarithmic
utility function the coefficient of risk aversion decreases with x and in the case of

the quadratic utility function the risk aversion increases with x.




The utility function, of course, may also be concave upwards; that is, the
marginal increase in utility increases with increasing values of the attribute x. In
such cases, the preference behavior of the decision-maker is referred to as risk

affinitive. It is believed that this preference behavior is ordinarily not realistic.

3.3 Sensitivity of Expected Utility to Form of Utility Function

Usually, it is difficult to ascertain which type of utility function is most
appropriate; e.g. whether it should be of the exponential or quadratic form. The
correct choice of the form of the utility function, however, may not be very crucial,
especially if the expected utility values are not sensitive to the form of the function.

In order to examine the sensitivity of the expected utility associated with a
given action, to the above three forms of utility functions, consider the simple case
in which the possible outcomes from an action can be described by the value of a random
variable X. In this case, the expected utility of a given action may be expressed as

follows.

E(U) = J u(x) fx(x) dx

where fx(x) is the probability density function of X and U(x) is the utility function.
Using the second-order approximation to evaluate the expected utility (see Ang and

Tang, 1975), the result is
E(U) = u(x) + 1/2 Var(x) + u"(x) (3.11)

where x and var(x) are the mean and variance of the random variable X, and u"(x) is

the second derivative of the utility function evaluated at the mean value of X.
Applying Eq. 3.11 to the three types of utility functions described earlier, the

second-order approximation of the expected utility becomes, respectively, as follows:

For the exponential utility function,

- 2 =
1 - {1 - e . Var(x)-e X
Y

(3.12)

N

E(U) ~
l-e

For the logarithmic utility function,

E(U) = ———%j%--~[2n (%+8) - np - % Var(x) - —:l‘—zl (3.13)
in("e—') (x+8)
Finally, for the quadratic utility function,
E(U) = J; {x - % <n(3'<2 + Var X)} (3.14)
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In order to compare the expected utility obtained for the three different forms

of utility functions, each of the utility functions given in Eqs. 3.2 through 3.6 is
calibrated to have the same coefficient of risk aversion at the mean-value of the
random variable X. In other words, substituting X for X and y for r in Eqs. 3.9 and

3.10, we obtain

1 -
8=y
and,
o= X
1+x vy

A numerical study was performed for the case where X = 0.5, and var(X) = 0.1" and
0.252. The numerical results are summarized in Table 3.1.
From the results shown in Table 3.1, two observations may be deduced, as follows:
1. The expected utility is relatively insensitive to the form of the utility
function at a given level of risk aversion; the difference in the expected utility is
less than 27 among the three types of utility functions examined herein. .
2. The expected utility does not change significantly (at most 20%) over the
range of y (from 0.25 to 1.50) examined herein,
The implication of these observations is that the exact form of the utility function
will not be an important factor in the computation of expected utility. Moreover,
the risk aversiveness coefficient in the utility function need not be very precise;
i.e. any error in the specification of the risk aversiveness coefficient may not
cause significant difference in the calculated expected utility. 1In short, the
problem of ascertaining an accurate utility function would not be crucial in the

application of statistical decision analysis,

A Related Observation -~ As indicated in Eq. 3.11, an approximate expected utility
value may be computed on the basis of the mean and variance of the pertinent random
variable. This would suggest that the entire probability density function may not be
necessary in most decision analysis problems. In practice, the first two statistical
moments could be all the information that may be available for a random variable;
hence, Eq. 3.11 provides a convenient approximate formula for computing the expected

utility of a given action.
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Table 3.1 Comparison of expected utility for different forms of utility function

Expected Utility Value (2nd-order Approximation)

Exponential Logarithmic QuadratiE“

Variance (X) Y Function Function Function
0.1? 0.25 0.530 0.530 0.530

" 0.50 0.563 0.561 0.560

" 1.00 0.618 0.626 0.620

" 1.50 0.672 0.707 0.680
0.252 0.25 0.523 0.524 0.523

" 0.50 0.547 0.548 0.547

" 1.00 0.593 0.603 0.594

" 1.50 0.636 0.676 0.641

3.4 Sensitivity of Decision

The question of whether or not the optimal action suggested by a formal decision
analysis is sensitive to changes, or possible changes, in the probabilities and/or
utilities assigned to the various branches and paths of a decision tree is clearly of
interest. In view of the fact that the assignment of probabilities are often based on
subjective judgments, the sensitivity of the optimal alternative to variations in the
input information clearly deserves some attention.

If the optimal alternative suggested by a formal decision analysis has an expected
utility value that is far greater than those associated with the other alternatives,
it may be obvious that even significant changes in the input variables would not alter
the final results. However, in situations where changes in the input variables could
conceivahly alter the optimal alternative, the decision analysis could proceed assuming
that the probabilities and utilities are variables instead of assigned numbers. An
example is presented below demonstrating such a sensitivity analysis for a simple
decision tree, in which the pertinent probability factors are treated as variables. It
may be observed from this example that the unknown probability (or utility) does not
need to be known exactly, so long as it can be estimated to be within a range in which
a specific alternative can be shown to be superior.
Example

Consider the hypothetical decision problem of Fig. 2.1. Suppose that the gathering
of additional intelligence data is not a viable option. Thus, the only feasible
alternatives are A1 and A2' The decision maker believes that there is a high probability
that the site will be hard rock; however, the exact value of p is not known. From the

decision tree of Fig. 3.1 the expected utility of alternatives A] and A2 are
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E(UA ) = 50 (1-p) + 80 p = 50 + 30p
1

E(U, ) = 100 (1-p)
A
2
Figure 3.2 shows a plot of these two expected utilities as a function of p. It can

be observed that for p < 0.385, E(U, ) > E(UA ), hence using several small weapons

(A2) is a better alternative; where:% for p >10.385, using a single large weapon
(i.e. Al) is the better alternative. Therefore, even though the exact probability
of hard rock at the enemy's site is not known, a knowledge that p > 0.385 is
sufficient for deciding on a single large weapon.

If several probabilities and utilities have large uncertainties, a conservative
approach may be taken to investigate whether the optimal alternative remains valid;
that is, the extreme probabilities and utilities may be used in the decision analysis

to obtain a conservative choice of action. This may suggest an action that may or may

not be the same as the action obtained on the basis of the expected utility criterion.




Alternatives Qutcomes Utility

8, Soft Soil (I-p)

A,. Single Large 50
Weapon .

8, Hard Rock (p)

80
8, ' Soft Soil (I-p)
A2: Several Small 100
Weapons
8, . Hard Rock (p) o

Figure 3.1 Decision tree for example of sensitivity analysis
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Figure 3.2 Expected utility as function of probability p




1 IV. DECISION CONCEPTS IN SAMPLING AND ESTIMATION

Statistical sampling may be viewed as a decision problem -- first of all, there
is the binary decision of whether or not sampling should be undertaken at all, and
if so how extensive should the sampling program be (i.e. what should the sample size

be?). In this regard, certain concepts of Bayesian statistics are pertinent.

4.1 Bayesian Sampling

The basic assumption in the Bayesian approach to statistical sampling and estima-
tion is that the parameters of a probability distribution of a random variable are
themselves random variables. The uncertainty associated with a given parameter may
also be described with a probability density function.

A prior probability density function f'(6) for a parameter 6 may be prescribed

on the basis of judgment, or established on the basis of prior data and information.
Observational data may be used to revise or update the prior distribution for the
parameter. Based on the Bayes theorem, the updated or (posterior) probability density

function for the parameter 0 is given by the following (see Ang and Tang, 1975):

£"(0) = k L(8) £'(8) (4.1) t
where:

8 = the parameter under consideration;

f'(8) = the prior probability density function of 6, i.e.

prior to the observational data;

L(8) = the likelihood function of 8, given as the product of
the density function of the original variable X evaluated

at the observed data points x x

10 Xgr eees X3
L(0) =
i

n
: fx(xile),
=1

f'"(8) = the posterior distribution of 0, i.e. updated in light

of the additional observational data; and

k = a normalization constant to insure that f"(9) is a
proper probability density function.
As may be observed in Eq. 4.1, the Bayesian approach allows any prior information on

the parameter ¢ to be incorporated systematically in the final determination of 0.




The prior information could be based on previous sampling results, or indirect
measurements, or simply based on subjective judgments. In the event that there is no
objective basis for establishing a prior distribution, the diffuse prior (i.e. the
uniform distribution between 0 and 1) may be used. In such a case, f'(8) is simply a
constant, i.e. not a function of 6, and the posterior distribution f"(8) becomes

£7(0) = k L(8) = k fx(xile) 4.2)

s
a9
=

which consists of sampling information only, and may be referred to as the 'data-based
distribution”.

Sampling from Gaussian Population -— As an illustration, consider the sampling

from a normal population X. Assume that the variance 02 is known and the mean-value J
of the population u is the only parameter to be estimated from a sample of size n.
In this case, the likelihood function can be shown to be (see Ang and Tang, 1975)

Ly = N (%, &)
/n
where Nu(i,o/J n) denotes the normal probability density function for y with mean value f
x and standard deviation o// n. X is the sample mean of the n data values. In
other words,
1

-x 2
N (R,0/Va) = —— exp [- 2 E52)H% (4.3)
o 2ng/Vn 2 “olV/n

Hence, the data-based posterior distribution of p is simply a normal distribution
Nu X,0//n )

It can be shown (Ang and Tang, 1975) that the Bayesian distribution of the basic
random variable X, incorporating the effect of uncertainty in the parameter ; remains
normal with mean x and standard deviation 02 + ozln. The sampling uncertainty, denoted
by ozln, is added to the basic or inherent variability 02 to yield the overall
uncertainty.

On the other hand, if a prior distribution of u is available, e.g. if £'(u)
is normal N (u} ¢'), where u' and o' are respectively the prior mean and standard
deviation of u, then the posterior distribution of u can be shown to be also normal
Nu(u", ¢") in which (see Ang and Tang, 1975,

" . ?(?.)2 + JJ'(O'Z/B).

u (4.4)
(o )2 + 02/n
and, , e
S o'(c//n) 4.5)
@'Y " +a0"/n
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The results in Eqs. 4.4 and 4.5 can be generalized such that if there are two
independent sources of information on the parameter u, for example as represented by
Nu(ul’ol) and Nu(uz,cz), the two sources can be combined to yield an overall mean-value

of the parameter n as follows:

¥ = 2 2 (4.6)

and the corresponding standard deviation of the parameter y becomes,

o" = -—U—li:_g—._;,—:— 4.7)

/;F'+°f

The Bayesian approach described and illustrated above may be applied also to
sampling from populations that are not normal; for such cases, see Ang and Tang (1975).

The relation between the likelihood function and the prior and posterior distri-
butions of the parameter 8 is illustrated in Fig. 4.1. Observe that the posterior
distribution is sharper than either the prior distribution or the likelihood function.
This implies that more information is contained in the posterior distribution than in
either the prior or the likelihood function; this is, of course, to be expected as the
posterior distribution integrates the information from the prior with that in the
likelihood function.

£ ()

Y (p)
f'(u)

Figure 4.1 Prior, 1likelihood and posterior functions
for parameter u
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Figure 4.2 Selection of point estimator
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4.2 Bayes' Point Estimator

Based on the results of sampling, and any prior information that may be available,
the previous section shows that an improved posterior probability distribution for a
parameter can be obtained or established. For many practical purposes, however, the
point estimator (instead of the distribution) of the parameter is required or is more
useful. Such a point estimate may be obtained from a decision analysis.

Consider the decision tree in Fig. 4.2 which depicts a situation in which the
point estimator of the parameter § is to be selected. Because of uncertainty, an
estimate of the real value of the parameter § may contain error; therefore, for a
particular choice of the estimator é, a prediction error will result with some associated
loss. Modeling this estimation process as a decision process, the Bayes point
estimator may be determined such that the expected loss associated with the error in
prediction is minimized. Mathematically, if é is the estimator of a parameter 9 whose
actual value is described by a distribution f(g), the expected loss due to error in

prediction is

L = [ g(8,8) £(8) do (4.8)

where g(e,é) is the "loss function" for given values of 8§ and 8. The Bayes' estimator
is based on the point estimate that minimizes the expected loss; thus, it may be

obtained from the following relationship:

aL _ J 2800:0) _ £(g) a0 = 0 (4.9)

a0

Therefore, depending on the form of the loss function, g(6,8), the optimal choice
for the estimator may be different. For example, if the loss function is quadratic,

that is
£(8,8) ~ (o~ 9)2

the Bayes estimator can be shown to be the mean-value of 8; whereas if the loss function

is linear, that is

(8,8) ~ (8 - 8)

then the Bayes estimator is the median value of 6.
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4.3 Optimal Sample Size

In addition to the selection of an estimator on the basis of available sample
data, other questions that may be addressed pertaining to statistical sampling would
include the following.

1. Should a sampling program be implemented?

2. 1f sampling is necessary, how much sampling should be done; i.e. what

should be the sample size?
ihe problem of determining the optimal sample size may also be modeled as a preposterior
analysis. Suppose X is a random variable with parameter 8 that needs to be estimated
with the sample data. A decision tree that includes the determination of the optimal
sample size is shown in Fig. 4.3. Three phases of the decision process may be
identified. The first phase of the process pertains to wehther or not sampling should
be conducted (at node A}. If sampling is the preferred action, then a determination
of the sample size (at node B) would be needed. After the sample data have been
collected, an estimator é (at node C) is selected. The total loss for each of the
paths involving sampling will depend on the sample size n, and the estimated value of
the parameter relative to its true value.

The pertinent decision analysis would start at the last node of the decision
tree. The expected loss for a given n, {x}, and estimate é, is given by weighing

the loss over the posterior distribution of 6 as follows:
E(L{n,{x},0) = j L(n,{x},6,8) f'"(8) do (4.10)

At node C, the optimal estimate 6 is the value which minimizes the expected loss of

Eq. 4.10; that is, from

EQln, 0,0 _ (4.11;
28

~

Eq. 4.11 should yield the optimal estimator, eopt’ on the basis of which the expected

loss for a given sample size n (at node D) becomes

E(L{n) = J E(Lln,{x},eopt) £{x} dix} (4.12)
The required optimal sample size, nopc’ may then be evaluated from
dEL[n) _ (4.1%)
dn
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Figure 4.3 Decision tree for optimal sample size
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Example

Suppose that an exploration program is planned for determining the shear velocity
of rocks at different sites for the construction of a military system. The mean shear
velocity of the rock stratum is of principal interest for engineering purposes; from
this information, the elastic modulus and constraint modulus of the rock may be esti-
mated. The shear velocity of the rock may be assumed to follow a normal distribution.

Assume that the loss due to any error in the estimated mean velocity is proportional
to the square of the error, and the cost per unit of squared error is related to the
cost of performing field measurements. For simplicity, assume also that the c.o.v. of
the shear velocity of the rock (representing the inherent variability of the rock
stratum plus any error in measurement) is about 157.

The determination of the optimal number of measurements is of interest. Two
cases may be considered; namely,

(1) no prior information on the mean shear velocity is available;

(2) prior information on the mean velocity of similar rocks is available;

hypothetically suppose that this is N(4,000 fps, 400 fps).

The loss function may be expressed as
- ~ 2
L(n,{x}, u,u) = ctu - w)" + kn

where, u denotes the mean shear velocity of the rock, which is the parameter to be
estimated; 1 is the estimator for u; c is the cost per unit of squared error in the
estimator; and k is the cost of one measurement. This loss function assumes that the
loss due to error in p is quadratic, and the cost of sampling is linear with sample

size n. Applying Eq. 4.10,

@

l (e + kn] £"(u) du

E(L|n,{x},n)

cEL’(u—u)2 + kn

cE: [(u-u") + (u"-;)]2 + kn

cVar(y) + cu"m)? + kn

where " and Var”(u) are the posterior mean and variance of y, respectively.
Applying Eq. 4.11,

.d_E.(.L.I_:J:{—x.}Jﬂ = 2 C(u"_;) = ()
Y]
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from which the optimal estimator is,
- = "
(u)opt M

which means that the optimal estimator is the mean-value of the posterior distribution
of u.

The corresponding expected loss then is

- " "_ 2
E[Lln,{x},uopt) = ¢ Var''(n) + (u uopt) ] + kn

= ¢ Var"(u) + kn

The shear velocity of the rock is Gaussian with known standard deviation o; whereas,

the posterior variance of u is given by Eq. 4.5. Hence, the maximum expected loss is,

) oo oD% m)

9 + kn
(") + 0 /n

E(L|n '

(Lln, Cxdyn o

where ' and ¢' are the prior mean and standard deviation of the mean shear velocity wu.
From Eq. 4.12, the expected loss for a given number of sample measurements n,

is thus

2, 2
E(L|n) = f fe Ly £eix) dix)
(6" " +0°/n

ECIO RGN

+ kn
@ + ©2/n)

For the case in which no prior information on u is available, the estimate must be
based purely on the current field measurements. In such a case, the variance of u

is simply
" 2
Var"(u) = o /n
Hence,

E(L|n) = ¢ 02/n + kn
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The optimal number of measurements is given by the solution to the following

equation.

2
dE(L|n) _ o_ =
an T 7€ (nz )tk=0

from which the optimal sample size is,

n = gvc/k
opt

In the present example, the standard deviation of the shear velocity is known to
be

c = 0,15 x 4,000 = 600 fps

Also, assume that the cost ratio c/k = 3.25 x 10_4. Then the optimal sample size is

600 v3.25 x 10~

4

=]
]

opt

10.82 or 11

Hence, eleven measurements is the optimal sample size for the site exploration program.
In the case where prior information on the mean shear velocity is available, the

optimal sample size would be as follows:

n =g c/k-—9—~
opt (0,)2
2
- 10.82 - 9993
400
= 8.57 or 9

Hence, in this case the optimal number of measurements is 9, indicating that the prior

information is worth approximately two measurements.




V. EVALUATION OF FIELD AND LABORATORY DATA

5.1 Introductory Remarks

The concepts and tools presented in Chapters II through IV may be used in a number
of situations of strategic significance. A few of these are illustrated in the following.
The potential areas of application, of course, are not limited to those described here-
in; indeed, the possible areas of applications could be quite broad. In the final
analysis, the applications areas are limited only by the imagination and creativity of
the user in applying the basic concepts described herein. As alluded to earlier, the
application of the general concepts is often not straight-forward, as most significant
applications require modeling and conceptual formulations of the underlying physical
problem. In this light, the examples of applications described in the sequel are merely
to demonstrate the general significance of statistical decision concepts, and to
illustrate the applications to specific situations involving strategic planning and

decision making.

5.2 Field versus Laboratory Tests

One of the prime objectives of a test program, either field or laboratory, is
often to validate or revise/update some prior theoretical or empirical relationship
for predicting conditions in the real world, or for extrapolating prior observations
beyond the range of available data. In statistical terms, a prediction is usually
given in terms of the mean value and associated standard deviation (or coefficient
of variation). Invariably, such predictions are imperfect and thus will contain
inaccuracy and uncertainties. For example, the predicted or estimated mean-value x
of a variable X may contain bias, which is a systematic error, such that the correct

mean-value would be

M, = - — (.1

where y is the mean bias factor necessary (even if only to be determined subjectively)
to obtain the correct mean-value oo

In addition, there may also be statistical error in the estimated mean-value x.
That is, suppose that X is the estimated sample mean from a sample of size n. Then,
conceptually, if additional samples of the same size were to be obtained, there could
conceivably be some scatter in x; this scatter is given by 02/n, which decreases with
the sample size n and represents only the random error due to sampling. However, there
may be other factors that could contribute additional random errors to x, which may
be represented by the coefficient of variation A“. The c.o.v. Av may be much larger
than the sampling error if predictions are based entirely on laboratory and theoretical

results; whereas it may be negligible 1f actual field data were used.




In any case, test results are particularly useful for evaluating or improving

the mean bias factor v of a prediction, as well as for evaluating the c.o.v. Av'

Either field data or laboratory test data, or combinations thereof, are useful for

these purposes. i
Field Tests -- If field test results are available, they can be used to update

any prior information as follows:

Let B = the bias in the prediction of the real world. Then, assuming that the result

of a field test is a realization of the real world, the bias is

B = Xp/Xp

where:

XF = field observation, which is a realization of the
real world, and;

XP = a prediction of the real world

If the sample size of the field data is Nps the mean of the individual ratio
(xFi/xPi) should yield the mean bias t

B = —1_4
B o g(xﬂ/xﬁ) (5.2)

Also, from the same set of field data, the error in B is.

Q
o - /_B_ (5.3)
g
where QB = cB/BF, and Sa is the sample standard deviation of the ratios xFilei'

In other words, B is the inaccuracy of the prediction. From ng sample field
data, the mean bias may be estimated as in Eq. 5.2. Also, from the same set of data,
the c.o.v. of the mean bias B can be estimated as in Eq. 5.3.

Laboratory Tests -—~ In the case of laboratory test results, the total inaccuracy

in the prediction may be divided into two parts. First, the prediction may be bias
relative to the laboratory tests; in addition, there may be systematic difference between
laboratory and field test results. Therefore, the total inaccuracy of a prediction may
be represented as,
X

B = (—xf) (—%) =CxA (5.4)
The ratio C = XF/XL may be called the "calibration factor" representing the error or
bias of laboratory tests, whereas A = XL/XP is the ratio of laboratory data to the
prediction.
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From a set of ny laboratory test data, the mean bias between a prediction and

laboratory tests may be estimated as

- 1
= o L0y, /xp) (5-3)
Loy
The mean bias of laboratory test results, i.e. c, may have to be assessed judgmentally,
unless there are prior field and laboratory data to permit its estimation. The total

mean bias, therefore, is

B=Cxa (5.6)

From the same set of laboratory data, the c.o.v. of A can be estimated as

/oi/nL (5.7)

Q

|-

A

2
zﬁere Op = the sample variance of the ratios (xLi/xPi)' Thus, the total c.o.v. of
B becomes

o = - /2 +Qi; (5.8)

where QE-is the c.0.v. of C.

5.3 Posterior (Updated) Information

Assuming that the prior estimates of the prediction error are respectively B'
and Q' X the test results (either field or laboratory) may be used to update or

improve these prior estimates, obtaining the posterior estimates B" and QHE as

follows:
_ E(QB‘B‘) + B’ n)
B" = _.,..-,.,____~— .__._———-~.———-—‘ (5.9)
(g B) (Q' B )
and,
1 @y B) @'y B')
Qg = Hi v "‘—:TT:‘_:‘.T_"::‘._ (5.10)
/(;z—n) +@'y B' )

where B and QE are as given by Eqs. 5.2 and 5.3, or Eqs. 5.6 and 5.8.
In the case where the test results consist of both field and laboratory tests,

the two types of tests may be combined to give

-2 - - 2
Be(ag B+ BL(QEF B
R e (5.11)
G- B)) + (= B.)
B L g F




1 (QEE BF) (QEL BL)
g}gui. (5-12)
f )%+ (= B2
(@ By
BF F BL L

where E} and Qﬁ are given by Eqs. 5.2 and 5.3; whereas iL and QE are given by Eqgs.

5.6 and 5.8. Tgese may then be used to update any prior estimate% B' and Q'E;
obtaining the corresponding posterior estimates as shown in Eqs. 5.9 and 5.10.

5.4 Measure of Information

In order to define or establish a utility measure for a test plan, some measure
of information gained from the experiment is obviously important, in addition to the
cost of the experiment. For this purpose, observe the following.

Perhaps of first order importance from a test plan is the evaluation of the mean

bias factor of a prediction; in this regard, the utility function may be defined in

a quadratic form as follows (or other forms may be prescribed):

= w22
u|uB » B = ~k(B - up) (5.13)

where,

Vg o= the true mean bias;
B = estimated mean bias based on the experimental data.

Assuming that vy is a random variable, the expected value of Eq. 5.13 with respect

to “E is,
= = 2 = =2
E(U|B)= -k E__ (B - u)° = k Var(B) = ~ k(@ B) (5.14)
bg B B
Finally, taking the expected value over all values of B,
2 2 - 2 =
E(U) =k Ex (95 B)" = - ka'g [Var(B) + E°(B)] (5.15)

Observe that Var(i)is a second order term, i.e. <<1.0; whereas EZ(ES = 1. Hence

E(U) = - k 9% ) (5.16)

Similarly, the utility function may be defined in the form,

= 2
Ului, B= -k (B~ 1w + k(g - 1) (5.17)
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or

— - 2 —
Ulug, B = =k (B - up)” + k(B - 1) (5.18)
In either of these latter cases, it can also be shown that the expected utility is

E(U) = —klﬁgz (5.19) '

In short, the above results show that if a quadratic utility function is appropriate,

the measure of information content can be defined solely in terms of the c.o.v., Q 3

Therefore, the information gained from a test program would be inversely pro-

portional to Q%. The cost of a test program obviously is directly proportional to the

size of the program, i.e. sample size n. Consequently, the utility of a test program
may be defined as a function of the cost per unit of information gained, or CQ%
Therefore, the "best" experiment may be the one that minimizes the cost per unit

information gain.

Example
For illustration, consider the determination of the bearing capacity of a large .

site for the design of the foundation of a military facility. For this purpose, assume
that the test options include:
(1) 1load bearing capacity tests in the field;
(2) wunconfined compression tests of laboratory soil samples obtained from boring,
and subsequently calculating the bearing capacity based on the soil parameters
obtained from such tests.

Obviously, load-bearing capacity tests in the field are expensive and, therefore,

only a limited number of such tests may be performed (if at all). However, more
extensive soil samples may be obtained over the entire site.

Suppose that five load tests were performed; the locations of the tests were
spaced sufficiently far apart to cover the entire area of the site. At each of the

load test locations, assume that one so0il sample is also taken which may be considered

to be the "control samples”. The measured bearing capacity from the load tests, and
the corresponding bearing capacity estimated from the control soll samples, may be as
follows: Bearing Control Soil Bearing Ratio
Load Tests Capacity x_ Sample Capacity x xF/xL
1 3,500 psf 1 4,000 psf 0.875
2 3,000 2 3,000 1.00
3 2,500 3 3,200 0.781
4 4,000 4 3,500 1.143
5 4,300 5 4,500 0.956

For the remainder of the site, only soil samples are taken; say fifteen more were

obtained in addition to the control samples, giving results as follows:
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Soil Sample Bearing Capacity, x

L
6 - ~ = - - - =~ - - 4,300 psf
A T 3,600
8 - - - m . e e m - = - o 3,800
R T R 4,700
10 = ~ = = = - = =~ - - o < 4,200
I R T 3,900
12 - = = = - - - - - .o 3,300
13 -« - o - - -~ - -~ o 2,900
14 = - - = = - - - o - o o 4,800
15 - - = = o - = - - -~ 4,000
16 - = = = = = = = = = = 3,700
I e 3,600
18 = = = = = - - - - -« o 4,100
19 - = = = « = = = - = < < 3,900
20 = = = = = = - - - e - 4,500

Assume that the soil type over the entire area of the site is fairly uniform, to permit
the use of a uniform bearing capacity for the entire site (if the soil tvpe is not
uniform, the area may be divided into subareas). The results of the field and laboratorvy
tests, describe hypothetically above, then can be used as follows.

From the field test results, the mean bearing capacity is

§F = 3460 psf;

and the corresponding c.o.v. is

2, =0.21
Xg

Also, the uncertainty (c.o0.v.) in the estimated mean bearing capacity is

oz = 221 _ 4 g9

¥ /5

On the basis of the laboratory soil samples, the mean bearing capacity is calculated
to be

xL = 3875 psf;

and the corresponding c.o.v. is,

Q, = 0.14
xL

from which the c.o.v. of Ei is,




o o 0:14

X~ /%

Comparing the bearing capacity estimated using the control soil samples with the

0.03.

corresponding field test results, it is obvious that x. tends to overestimate the actual

L
value of the bearing capacity at the site. In otherwords, there is a systematic bias
in the laboratory-based bearing capacity estimates; i.e. the correct bearing capacity

may be expressed as
X=¢C XL
where C is the bias in the laboratory-based bearing capacity estimate for the site.

From the ratios of XF/XL given in the above table, the mean value of C is

C = 0.951

and the associated c.o.v. is

0.136

¢ = 0.951 - 0-143
whereas the c.o.v. of C is, .
8 - 0-143 _ 4. 064.
/5

Thus, the total uncertainty underlying the laboratory-based mean bearing capacity is

== /a2 402 = Jﬁ).0642 +0.03% = 0.071
X C XL —_

The load test data as well as the unconfined compression laboratory test data
described above are useful for estimating the bearing capacity for the site in question.

That is, both sets of data can be combined in accordance with Egs. 5.11 and 5.12, to

give a composite estimate of the bearing capacity for the site as follows:

7 = 3460(0.071x0.951x3875)2 + 0.951x3875(0.09x3460)2

X
(0.071x0.951x3875) 2 + (0.09x3460) 2
= 3592 psf.
o o 1 (0.09x3460) (0.071x0.951x3875)
X = 3592

J(.09x3460)2 + (0.071x0.951x3875)2

= 0.06.

i
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VI, ANALYSIS AND PLANNING OF TEST PROGRAMS

6.1 Introduction

In test programs that are extremely costly, such as the Mighty Epic and the Diablo
Hawk test programs, the need for a systematic framework for planning the experiments is
clear. The purpose and objective of any test program, of course, is to obtain informa-
tion to improve the existing state of information and knowledge.

A test plan, therefore, should be to obtain the maximum benefit, which may be
defined in terms of information gained or improvements accruing from the tests.

The basic concepts of statistical decision may be used to advantage in the planning
of test programs; however, the application of these concepts require modeling of the
specific problem underlying a particular test program. In view of this, the models
developed herein will refer to test programs similar to the Mighty Epic or the Diablo
Hawk programs.

In particular, referring to test programs such as the Diablo Hawk, the programs
involve the testing of specified diameter tunnels subjected to nuclear weapons
effects. Decisions, therefore, are required relative to the choice of diameters of
the tunnels to be tested, the location of the tunnels relative to the blast pojnt
which may be given in terms of the maximum strain at which the tunnels may be subjected,
as well as the number of tunnels (or sections of tunnels) of a given diameter.

An approach to this problem is developed and formulated below. Before describing

the approach, consider the following.

6.2 Preliminary Consideration

Presumably, the failure strain £, of a tunnel with given diameter is random as

shown in Fig. 6.1. Moreover, it may ge assumed that the failure strain depends on the
diameter of the tunnel; that is, there is a size effect which may be a regression
relation (could be nonlinear between the mean failure strain and the diameter of the
tunnel), as illustrated hypothetically in Fig. 6.2.

Suppose that there is some prior information on the fallure strain of tunnels with
given diameter d, to establish its probability distribution f€ (¢), with mean b and

£ f
aE . Furthermore, assume that g is known, whereas ue is a random variable

f f f
with prior distribution f& (x), whose mean value is u' and standard deviation o'.
€

Then, if one tunnel of diameter d is tested at a given strain €, the result can
be used to revise and update the prior probability distribution fLe (x) as follows:

If the tunnel survives the test at strain ¢, i.e. ¢_ > ¢, the posterior distribtuien

f

for u is,
g
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Figure 6.1 Failure strain of tunnel or rock cavity
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Figure 6.2 Failure strain versus tunnel diameter
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" = =
qu(xlef > €) P(uEf x!ef > €)

P(uef= xN €g 2 €)

P(ef > €)

P(e. >elu. = x)P(u_ =x)
f €p €¢

P(e,. > )

f
[1-F_ (clu, =x)]

- £ £ £ (x) (6.1)

u
{1- Fcf(E)] €

whereas, if the tunnel fails at the test strain <, {i.e. Eg <€, then the corresponding

posterior distribution for M would be
f

L]

qu(xlef < g) P(uef = xlef <€)

FE (elu = x)
£ i ,
= — fu (x) (6.2)

The updated mean and standard deviation of the mean failure strain then become

' o= J x ¢« f" (x) dx (6.3)
0 “e

© 2 1/2
o" = [ J (x - u'"° £ (x) dx ] (6.4)
. 0 Ue

6.3 Measure of Benefit (i.e. Information Gain)

Ordinarily, there may be prior information on the mean failure strain, say u',
and on its uncertainty o' (even 1f only based on subjective judgments).

The results of a test or tests can then be used to npdate the prior information
to obtain the posterior mean u'" and associated uncertainty o". The benefit of an

" and o" relative

experiment, therefore, may be a function of the difference between u
to the prior values p' and ¢'. Consequently, in defining a measure to represent the
benefit of a test, consider the . > lowing:

If no tests were conducted, the prior statistics u' and o' will be used in the
planning and design of a system. Therefore, if there are large errors in u' or in o',

the loss will correspondingly be large, whereas if these priors are accurate (i.e.

50




small error), the resulting loss in the use of this prior information directly in

design will be correspondingly small. On this premise, the benefit that may be gained

from a test or tests can be defined as follows.

2

U(N",\J") = a(u"u: U') + (O' '20 ) (6,5)

where p" and ¢" are the updated mean and standard deviation after the test data have

been obtained.
2 n2
ARG
2
o) WMot 2
from the test results; whereas the first term, (——-;T———) represents the reduction in
the loss that would otherwise incur had there been no tests conducted.

The second term in Eq. 6.5, ( ), is the reduction in uncertainty accruing

An optimal test program may then be developed to obtain the maximum potential

benefit, meaning maximum U.

6.4 Optimal Test Strains

Suppose that only a single tunnel is to be tested at a strain level €. The
question then is "at what maximum strain ¢ should the tunnel be tested in order to
derive the maximum benefit from the test?"

The decision variable in this case obviously is €. If a tunnel is subjected to a
test strain e, two possibilities may occur -- the tunnel may survive the strain level
¢ (event 8)or it may fail (event F ). The simple decision trce in this case may be

represented as shown in Fig. 6.3.

{u",d" } > U()J!l',o"]')
e 5 171

‘-’lr
{u; og } > U(u;,cg

S

(e > ¢€)

F = (ef < g)

Figure 6.3 Decision tree for test strain

For one tunnel, the results of the test may either be that the tunnel survives (8S)

or fails (F) when subjected toc the load that induces the strain e. Depending on

whether the tunnel survives or fails at the strain level ¢ , the corresponding posterior
mean and standard deviation may be denoted as (u;, OI) and (u;, 03). The corresponding

utility would be U(u;, 0;) and U(u;, o;) as given by Eq. 6.5.




Hence, the expected utility of a test at strain level ¢ is

E(U|e) = UG, o)) + Pleg > €)

" n
+ UGy, 05) Pleg <€) (6.6)
in which the posterior quantities u" and ¢" may be obtained through Eqs. 6.3 and 6.4.

The optimal test strain, eopt’ may then be obtained on the basis of the maximum

expected utility criterion, as follows:

dEWle) 6.7)

de

This means that if a single tunnel of a given diameter were to be tested, it should

be placed at such a distance from the blast point at which the induced maximum strain

is eopt'
Generalizations -- The basic procedure described above for determining the optimal
test strain for one tunnel can be extended to any number of tunnels of the same diameter. '

Consider first the case of two tunnels.

If two tunnels are to be tested, the strains & and €y that the tunnels should
be subjected to can be determined also on the basis of maximum expected utility, in
the sense of Eq. 6.7.

The declsion tree in this case, 1s as shown in Fig. 6.4.

{ul,cl} -+ U(uE,OE)

{“3’°3} -> U(ug,og)

{U':;’o':;} d U(ugyag)

tufhopd » UGyop)

Figure 6.4 Decision tree for test strains of two tunnels.
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As shown in Fig. 6.4, the test results for the two tunnels could conceivably be that
both tunnels survived or one of them survives whereas the other fails, or both tunnels

fail, at strains e, and €5 respectively; i.e. there are four possible outcomes, t

1 1
62, 83, 64. Corresponding to each of these four possible outcomes of the set of two
tunnels, the resulting posterior means and standard deviations are u; and 0;, i=1, 2,
3, 4.

The expected utility at the test strains €1 and £,y is, therefore,

E(Ulcl.ez) = Uu),07) P(S,,8,) + U(u] ,0%) P(S,F,)

+ U(ug, 0;) P(F),8,) + UG, 0,) P(F,,F,) (6.8)

where, assuming that the outcomes between the two tunnels are statistically independent,

P(SI’SZ) = P(sf z-El) P(cf 3.52)
P(sl’FZ) = P(e:f z_sl) P(cf < 52)
P(FI’SZ) = P(ef < cl) P(cf z_rz)
P(Fl’Fz) = P(cf < el) P(cf < 52)
in which;

€,

i
P(cf < ci) = { f€ (x) dx

0

f

where fs (x) is the probability density function of the failure strain as depicted
in Fig. b.1.

And,
P(cf > Ei) =1 - P(ef < si).
Also,
“3 = Io x fj"(x) dx
oy I x - a2 100 dx; 1=1,2,3,4
3 0 h ]
where:
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" = = - .
fl(x) P(pCf xlcf > € €f > 52)

P(“sf' x(Yeg > €pp € > €))

P(sf > g

1’ f¢ > )

Assuming that the outcomes of the two test tunnels are statistically independent,

Pleg > Elluef = x) Pleg 3_52|u( = x)

f

£5(x) = £ (x)
P(ef > 61) P(ef > 52)
where f'(x) is the prior distrubtion of the mean failure strain Mo
f
Similarly,
P(ef :_elluef = X) P(ef < CZ‘UEf = x)
£5(x) = £'(x)
P(sf > gl) P(cf < 62)
P(ef < ellucf = x) P(ef > ezlugf = x)
£,0x) = £ (x)
P(ef < 51) P(ef > 52)
P(cf < clluef = X) P(ef < czlucf = x)
£,(x) = £'(x)

P(c

A
™
~

£ <€) Pleg < ¢

The optimal test strains, (el, 52) , may then be obtained on the

opt
expected utility as follows:

3
E(U]el,ez)
e

1

=0

DE(UIEI,CZ) i
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The generalization of the above formulations to n tunnels of the same diameter,
tested at strains ¢

Fig. 6.5 below.

1’ €qs ©r Epo may be portrayed with the decision tree shown in

~ ~
/// ,,/’ u"(S F )
{Ei} / ef{skaFQ} k’ ¢ U(ulll’cl'l)
‘*(; a"(S. ,F.) i’7i
~ N k’ 2
~N
\\ N
\\\\ ~N
Test strains {ci} Test results: Posterior estimatﬂ
for n tunnels k tunnels survive of the parameters
¢ tunnels fail
k +2=n
Figure 6.5 Decision tree for test strains of n tunnels .j

The expected utility then may be represented as,

- . " "
E(UI{Ei}) = 2 P(Oi) U(ui,Oi) (6.10)
all 1
in which
P(O.,) = N (P(e. > €,) + T P(e_<c¢.)
. iek £ L feg © i
and,
u! = J x £ (%) dx
i 0 { i
" * A1 2 "
oy = [ (x=u")" £ (x) dx
i 0 0
i
%
Thus, the utility associated with outcome 01 is, Ai
" L} 12 '|2 "

V] -u 2 01 - 01

" " = 1 i
v, of) = a( ”i )T+ ( 3 )
%
from which the expected utility of Eq. 6.10, and the optimal set of test strains
{Li}apt may be obtained from ;




az(u{{ei})

Bei

=0 (6.11)

6.5 Optimal Number of Test Tunnels

In order to determine the optimal number of tunnels (of a given diameter) in a
test program, the consideration of the cost per tunnel must be included. Assuming
that for a given number of tunnels with the same diameter, the optimal test strains
have been determined as described above, and introducing the costs of each tunnel, c,
the expected utility per unit cost for n tunnels can be expressed as,

B[ ey} 0 ) = ﬁ; E(U|{e ) (6.12)

i}opt
that is, for n tunnels of a given diameter, the optimal test plan is the one with
{Ei}opt as determined from Eq. 11. Eq. 6.12 then gives the expected utility per unit
cost for this set of tunnels.

Again, on the basis of the maximum expected utility criterion, the optimal number

of tunnels of a given diameter, n , may then be obtained from,

opt

8E(U*({si}gpt, n) -0

dn (6.13)

The decision tree would appear as shown in Figure 6.6 b2low.

1’11 —
B -
o= =y
~
\ \
\ ~
~
Figure 6.6 Decision tree for determining number of
test tunnels.

Referring to Fig. 6.6 the optimal set of test strains is obtained at node B; whereas,
at note A, the optimal number of tunnels (of the same diameter) are determined.

The above analyses, therefore, would yield the optimal number of test tunnels
of a given diameter, and a corresponding set of optimal strain levels at which the
various tunnels should be tested. The same analysis may be performed for tunnels of
other diameters. The results may then be combined with those of the other test tunnels
(i.e., of other diameters) to obtain the expected utility (or information gain) per
unit cost. Repeated evaluations of several test plans, each consisting of different

combinations of tunnel diameters, should provide a basis for identifying the optimal
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test plan on the basis of maximum expected utility per unit cost.
Example

The concepts formulated above are difficult to illustrate numerically; much of
the numerical calculations will involve extensive numerical integrations making
computer calculations necessary. Nevertheless, the following formulation and discussion
may serve to clarify the concepts developed herein.

Suppose the diameter of full-size prototype tunnels in the field will be twenty
feet. Because of expense, the maximum diameter of test tunnels may have to be limited
to ten feet; moreover, the results obtained for 10-foot diameter tunnels may be con-
sidered to approach those of the full-size 20-foot tunnels. Even for 10-foot tunnels,

the expense of testing tunnels of this size may be so high that the number of such

tunnels must also be limited; the use of smaller diameter tunnels in a test plan,
therefore, may be more cost-effective.

Consider the case in which two sizes of tunnels are to be used in a test program;
namely, tunnels with two-foot and ten-foot diameters. Furthermore, assume that only
two 10-foot diameter tunnels will be tested, whereas a larger number of 2-foot tunnels
will be economically possible. A decision on the strain levels at which the various t
tunnels should be tested is required in this case.

Consider first the 10-foot tunnels, at test strain levels € and ) for the two
tunnels, the possible results or outcome from the tests of these two tunnels will be
as follows:

(515895 (515Fp)s (F),8,), (F),Fy)
i.e. one or both of the tunnels may survive at the specified test strains £1 and €qs
or none of them may survive,

Suppose also that from prior observational data, supplemented with judgment,
the mean failure strain of ten-foot diameter tunnels is estimated to be u', and
standard deviation ¢'. However, the mean failure strain contains uncertainty; hence,

it may be assumed to be a random variable with normal distribution; i.e.

f;(x) = Nu(“" o')
After the test results, the posterior statistics of the failure strain may be
updated or revised depending on which outcome is realized. For example, if tunnel
99 i.e. the outcome
is (sl’FZ)’ then the posterior statistics for the mean failure strain ¢f 10-foot tunnels

No. 1 survives the test strain € whereas tunnel No. 2 fails at ¢

are:
u' = J x fg(x) dx

0"2 = I (x - u")2 fx(x) dx




where,

" = =
fu(x) P(u xlcf 2 €, g < Ey)

Assuming that the outcomes between the two tunnels are statistically independent,
P(ef > cllu = x) P(ef < ezlu = x)

f'(x) = - f'(x)
¥ P(s,) P(F,) u

£,~X €.,~X
1 2
{1 - o( 5. )1 ¢( o )
= f f f;(x)
P(Sl) . P(Fz)
in which,
€ - u'
P(Sl) = P(sf > g ) =1 - ¢ )
-1 2 2
Vo +g'
f
€9 -u'
P(Fz) = P(Cf < 92) = ¢ > 2)
/o + o'
f

and ¢(-) is the cumulative probability of the standard normal distribution. The
posterior distribution f" for the other outcomes can be similarly determined.

The above results, of course, pertain to tunnels with 10-foot diameter. For
purposes of discussion, suppose that the above analysis yield posterior estimates for
the mean faillure strain of 10-foot tunnels to be

W= 2 x 1070
and

o" = 0.4 x 1077

On the basis of the results for 10-foot tunnels, the mean failure strain for the

full-size 20-foot diameter tunnels may be determined as follows:

“e20 = 210 ‘f10

where A is the bias factor, principally to take account of anv size effect (the statis-
tics of A may be determined from prior expericnce). The mean failure strain for 20-
foot tunnels then may be expressed as

"

-_u
W20 = A V1o
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Assuming A = 0.95 and @K = 0.4,

ugo = 0.95 (2x10"3)=1.90 x 1072

and the associated c.o.v. for the mean failure strain of 20-foot tunnels is

" 2
5, o 62+ (a1
20
=f0.42 + 0.22

1]
o
.
&
v

From which,

3 3

" 0.45 (1.90x10 ) = 0.86 x 10

..’20

(o]
[}

1
20
from earlier tests, then the gain in information (or utility) accruable from the

At this point, if the prior information is u and 050’ which may be results

test of the two 10-foot diameter tunnels becomes

w0 ¢ 2 1 2
Y20 T M20.2 . Y20 T %20

N 1 -él\ + ( \ 2 )
20 a

U = a(

Observe that, implicitly, U is a function of 2 and €9 Hence, the optimal test

strains may be obtained from maximizing U, i.e.

!

T o
and, 1
iU

écz 0

The results would be the optimal strains that should be applied to the two 10-foot

tunnels. Computer calculations will be necessary to obtain these results.




VII. ANALYSIS OF A RETALIATORY SYSTEM

7.1 Premise of Analysis

Another potential application of statistical decision concepts is in the
evaluation of a new retaliatory system, such as the MX system which is currently
under consideration and development. (For this discussion, consider a vertical
shelter configuration.)

As a retaliatory system, the principal objective is to insure a minimum level of

retaliation after the first strike by a potential adversary. In the case of the MX

system, this may be the number of surviving missiles following an all out enemy attack.

The number of missiles that may be estimated to survive an enemy attack will
depend on the following:
(1) The number of shelters in the total svstem.
(2) The probability that a "loaded" shelter will be targeted or under attack
by an enemy warhead.
(3) The probability that a missile will survive if it is under attack.

Mathematically, the number of surviving missiles may be expressed as

NSM = P(S|A) P(A) x N

where:

NSM = number of surviving missiles after an enemy
attack;

Nm = total number of missiles in the MX system

P(A) = probability that a "loaded" shelter will be
under attack;

P(S|A) = probability of a missile surviving the attack A.
The probability of attack, P(A), will depend on the attack strategy deploved

by the enemy; i.e. it is a conditional probability P(AlDi), where D, is the strategy

i
used by the enemy, such as the "one-on-one" or the "walk" scheme. 1In the

scheme, the enemy attacks with one warhead for each shelter; whereas, in the "walk"
scheme, one warhead 1is aimed at a cluster of shelters.

On the other hand, the probability of survival, P(S{A), is a function of the
hardness and the weapon-placement accuracy of the enemy’'s warhead. S$pacing of the
shelters may also be relevant if the enemy deploys the "walk'" scheme; however,

spacing may not be pertinent for the '"one-on-one" scheme.

7.2 The Probability of Attack

Depending on the enemy's arsenal, there may be more than one option for his attack

strategy. In other words, there may be several potential threats to a retaliatory

system. Accordingly, the attack probability, P(A]Di), will further depend on the attack

strategy deployed by the enemy; moreover, this will obviously also depend on the quality

of the enemy's intelligence.
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The One-on-One Scheme -~ One of the threats to the MX system is if the enemy

chooses to deploy one warhead per given shelter. In this case, the probability
that a "loaded" shelter will be under attack is a function of the enemv's intelligence
and the number of successful RV's (re-entry vehicles) in the attack.

For the one-on-one thre. the probability that a given missile mav be under

attack can be developed as follows:

Let Ne = number of successful enemy RV's in the attack;
Nm = total number of missiles in ﬁhe MX ﬁystem; i.e. the
; number of shelters that are "loaded'.
' Ns = total number of vertical shelters in the system.
8 = a measure of enemy intelligence, expressed in terms of

a fraction of loaded shelters that are known to or can
be pin-pointed by the enemy.

Observe that if the enemy has 0 intelligence, and chooses to deploy the one-and-one
attack strategy, then this is equivalent to targeting the missiles at random among
the NS vertical shelters. This means

N

m
B = N -
s

The probability of attack, if the enemy uses the one-on-one scheme, therefore,

is given by
P(A]1/1) = H(Ne/Nm)

For example, if the total number of shelters is 5,000, and among these, 250 are loaded,

then assuming that half the '"loaded" shelters can be identified by the enemy then

_ 250
2,500

= 1/10

e

In such a case, the probability of attack becomes
P(A|1/1) = L.
10V e m

Therefore, 1f the enemy can successfully deliver 250 RV's, the probability of attack

of a missile is,

P(A|1/1) = 0.1 x 250/250 = 0.10

The "Walk" Scheme -- In the case of the "Walk' scheme, the enemy would presumably

aim his RV's at a cluster of shelters; that is, several (e.g. 3 or 4) shelters mav

be subject to the overpressure from a single weapon burst.
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Again, suppose that there is a total of Ns shelters, among which Nm are ''loaded".

For purposes of this discussion, assume that the shelters are arranged in clusters of

4 in a square as shown in Fig. 7.1.

o o

o O('"/ shelter

Figure 7.1 Cluster of four shelters in a '"square"

Then,
N

EEE-= proportion of the total number of shelters that the
s enemy estimates are loaded.

For a given target point or "square", the number of corners in the square that the
enemy would estimate are loaded can be described as follows:

Nm)b—y

BN
s

P =y = Yy Y a -
y) = y BN

in which, Y = the number of corners that the enemy will think are loaded. The
expected value of Y is

Nm
E(Y) = 4(50)
S

Let X = number of corners that are actually loaded. The expected value of X is,

N
E(X) = BE(Y) = 4(D)
s
Obviocusly, the enemy can be expected to target only those squares that have at least
one loaded shelter; i.e. Y > 1. On this assumption, the number of missiles in a square,

however, may be estimated only in terms of its probability as follows:

N, 4=y
= y - — .
PY = yly > 1) = P(m) [()( )(1 BN) 15 fory > L.
whereas, the corresponding expected value of Y is
4
EQiY>21) = ] yP(x=yly>D
y=1

Alternatively, of course, the enemy may target only those squares with Y > 2, or

Y > 3, or only those squares with Y = 4. In these latter cases, the corresponding
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conditional probabilities and expected values of Y are respectively as follows:

For squares with Y > 2:

b-y
P(Y = |Y>2)=—1——(4)(—N-“3)y(1-Ni) ; y 22
itz PO > 2) 'y BN, BN_ ; =
4
E(Y]Y >2) = ) yP(Y=yl|Yy>2)
y=2
For squares with Y > 3:
N vy N 4-y
- o1 4 D ! .
P(Y = v|Y > 3) = ) () (BNs) (1 BNs) 3oy 23
4
E(Y|Y > 3) =] yP(Y=yl|Y>3)
y=3
Finally for squares with Y = 4:
P(Y = 4]Y = 4) = 1.0 t
E(Y[Y = 4) = 4.0
The conditional expected value of X, therefore, is
EGX|Y > y) =8 E(Y[Y 2 y); y = 1,2,3,4

Again, assuming that each cluster consists of four shelters in a square, the total

number of squares in the entire MX system, therefore, is
N
£
4

then, the number of squares with (Y > 1) is,

N
Number of squares with Y > 1 = [P(Y = 1) + P(Y = 2) + P(Y = 3) + P(Y = 4)} x Ts

N
Number of squares with (Y > 2) = [P(Y=2) + P(Y=3) + P(¥=4)] 7?

N
Number of squares with (Y > 3) = [P(Y=3) + P(Y=4)] —:—

and,
Ne
Number of squares with (Y = 4) = P(Y=4) x %




Therefore, if the enemy targets only those squares with (Y > 2), the number of

successful RV's needed by the enemy will be

N
[P(¥=2) + P(Y=3) + P(¥=4)] 7> .

In which case, the number of loaded shelters that will be under attack will be

E(X|Y > 2) x (No. of squares with Y > 2)

Hence, the probability that a given missile will be under attack becomes

E(X]Y > 2) x (No. of squares with Y > 2)
P(AlWalk) =

N
m

Numerical Example

Suppose that the MX system consists of 4600 shelters, among which 200
of them are loaded with intercontinental missiles. It is probably reasonable to
assume that this information is known by the enemy. However, at any given time, the
enemy would not know exactly where the 200 missiles may be placed among the 4600
shelters. To illustrate the above model, assume that the intelligence measure of
the enemy is B = 1/10. 1In this case, B8'= %%%6 = %3 would be equivalent to the absence

of intelligence information.

Therefore,
N
m _ 200 -
?ﬁ; = Ooixés00 - 0-433
from which,
0 4
P(Y = 0) = (0.435)" (1 - 0.435) = 0.102
P(Y = 1) = 4(0.435) (1 - 0.635)3 = 0.314

41 2 2
P(Y = 2) = 2197 (0.435)" (1 - 0.435)" = 0.362

P(Y = 3) = 57 (0.435)7 (1 - 0.435) = 0.186

P(Y = 4) = (0.435)% = 0.036

Then, the number of squares with Y > 1 = (1 - 0.102)5%99 = 1033,
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Similarly;
number of squares with (Y > 2) = (1 - 0.102 - 0,314) 1150 = 672
number of squares with (Y > 3) = (0.186 + 0.036) 1150 = 255
number of squares with (Y = 4) = 0.036 x 1150 = 41.
Also,
. 1 Y - . )
S(YIY > v ¢ 0,314 + 2 x 0.362 + 3 x 0. 4 x 0.
E(YIY > D) Gowgg (1 x 0314 + 2 x 0.36 3 x 0.186 + 4 x 0.036)
= 1.94
Similarlyv,
EQYIY > 2) = 2044
E(Y]Y > 3) = .16
E(Y[Y = 4) = 4.00 i
and,
E(X]Y > 1) = 1/10 x 1.94 = 0.194
E(XIY > 2) = 1/10 x 2,44 = 0,244
E(X]Y = 3) = 1/10 x 3.16 = 0.316
E(X|Y = 4) = 1/10 x 4.00 = 0.400

The last four figures given above arce simply the expected number of corners with Y > 1,
Y>2, Y>3, and Y = 4; these will, of course, not be realized in practice.

It the enemy chooses to attack only those squares containing at least two loaded
shelters, i.e. Y > 2, then the number of RV's that he must successfully deploy is
672, If the enemy has this capability, the expected number of missiles in the MX
svstem that will be under attack is 672 x 0.244 = 164. Therefore, the proportion
among the 200 missiles that will be under attack is

L64

500 = 0.82

P(A|walk) =

On the other hand, {f the enemy has limited capability, say less than 300 RV's,
he may have to target only those squares in the MX system with Y > 33 according to
the above calculations, the number of successful RV's required in this case will

be 255. Accordingly, the expected number of missiles in the MX system that will f ]

be under attack is 255 x 0.316 = 81. Then, the proportion of the active missiles |
that will be under attack is
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P(Awalk) = ;%5 = 0.41

7.3 On the Probability of Survival

To achieve or insure a given survival probability, the necessary hardness
(e.g. expressed in terms of overpressure capacity) must be designed into the
individual shelter, as well as of its components such as the shock isolation
system and the closure. The required hardness may be determined by applying
the appropriate "factor of safety" which is simply a factor that may be used to
amplify the weapon-induced overpressure in order to determine the required over
capacity of the shelter for insuring the desired survival probability. For this

purpose, the appropriate relationship between survival probability and the median

safety factor ought to be developed, which may be in the form shown schematically
in Fig. 7.2.

Median Safety Factor

Survival Probability, P(S|A)

Figure 7.2 Safety factor versus survival probability

That is, hardness may be defined as the median overpressure capacity of a shelter

or of its associated components. In this context, it is a function of the desired
probability of survival against a given overpressure environment, as indicated in
Fig. 7.2. Conversely, the probability of survival is a function of the relative
positions between the PDF (probability density function) of the applied overpressure
and the PDF of the overpressure capacity of a shelter as shown in Fig. 7.3. The

relative positions may be given in terms of the ratio of the median overpressure

capacity to the median of the applied overpressure, R/S, which may be called the
f median safety factor. Additionally, the survival probability is also a function

of the uncertainty in the applied environment as well as in the overpressure
capacity of the shelter. The uncertainties in the applied overpressure witl

include those associated with the following factors:
66
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inaccuracy in the overpressure-distance relationship;
error in the estimation of the coupling effect;
the determination of the effect of the height-of-burst;

the analysis of the effect of soil-structure interaction, among others.

The uncertainties in the overpressure capacity of a shelter facility will
include those arising from the following:

inaccuracy in the determination of the strength of vertical concrete/steel

cylinder;

the determination of the strength of closure;

the determination of the capacity of a shock isolation system;

error in the calculation of the response, etc.

7.4 A Trade-Off Problem

If a missile is under attack, its probability of survival under a '"one on

one”

threat would be lower than that under a "walk' scheme. On the other hand,

for the same number of RV's and the same enemy intelligence, the probability that a
missile will be under attack is correspondingly lower with the '"one on one" scheme com-
pared with the "walk" scheme, especially if the shelters are spaced sufficiently far
apart.

In short, the number of surviving missiles is a function of the probability of
attack as well as the conditional probability of surviving an attack. If there is a
relative likelihood that the enemy may employ one or the other schemes, say with
probabilities P, and P, in the case of the "one-on-one" and 'walk" schemes such that

Py and P, = 1.0, then the expected NSM is
= - + -
NSM =({L - P(F|A) P(AD] p_+ (1~ P(FlA) P(AD] P} N

where P(F]A) = conditional probability of failure given an attack.

In the case of the "one-on-one" scheme the probability of attack P(Ao) is simply
a function of Ne, Nm and 8. Implicitly, this probability is also a function of the
total number of shelters NS, since B is implicitly a function of Ns.

The probability of survival of a given missile, once it is under attack, will be
fairly low in the case of the "one-on-one” attack scheme. Its chance of surviving an
enemy RV will be largely due to the weapon inaccuracy, i.e. the CEP. Furthermore, the
probability of survival, P(SIAO), will not be affected by the spacings between the
shelters if the enemy deploys the "one-on-one" scheme.

However, in the case of the "walk" scheme, the probability of attack P(Aw), is a
function of Ne’ Nm, Ns’ and 8. That is,
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P(Aw) = g(Ne’ Nm’ Ns’B )

Increasing the number of shelters, Ns’ will decrease P(Aw), and thus increases the
NSM; this would mean using closer spacings among the shelters for the same land area
or the same total cost. However, for a given shelter hardness, the probability of
survival, of course, will decrease with closer spacings. The spacing may be increased
by using fewer shelters; this, will have the effect of increasing P(Aw) but will also
increase P(S|Aw).

Increasing the hardness of the shelter (i.e. increasing its overpressure capacity)
against a given weapon yield will also increase the probability of survival P(SIAW).

In otherwords, in the case of the "walk" scheme, there is an optimal expected NSM
between using large spacing (say 9,000 ft) with fewer shelters vs. using closer spacing
(say 4,000 ft) with correspondingly larger number of shelters and higher level of shelter
hardness. That is, for the "walk" scheme, increasing the hardness as well as increa;ing
the spacings between shelters will increase the survival probability; however, within
a finite land area or limited budget, larger spacings between the shelters will mean
smaller number of shelters and thus increasing the probability of attack P(Aw) of the
missiles.

In this light, there is therefore a trade-off between spacing and hardness in order
to achieve the maximum possible NSM (the number of surviving missiles), within a given
total budget for the MX system. In order to perform such a trade-off study between these
major factors, the necessary information must be developed. Such information would in-
clude the following.

(1) The relationship between the probability of attack P(Aw) as a function of
the variables Ne, Nm, Ns’ and 8. These relationships may then be used to develop the
relationships of P(Aw) as a function of the shelter spacing.

(2) In the case of the probability of survival, P(SlAw), increasing the spacing
between shelters will correspondingly decrease the overpressure on a given shelter for
a given weapon yield, and thus increases the probability of survival. Also, increasing

the hardness of a shelter will increase the survival probability since the capacity of
the shelter to withstand the applied overpressure will correspondingly increase. These

relationships should also be developed.
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APPENDIX A: EVALUATION OF UTILITY IN A
DECISION TREE

The procedure is as follows:
(i) Rank the events involved in the decision tree in order of preference
such that E1 >E, > ... >E; where the symbol > means "is preferred to."
(ii) Assign (El) = 1,0 and u(En) = 0.
(iii) Establish the value of p such that the decision maker is indifferent

between the following lotteries: E
p 1

1.0
O E, ~=

(1-p)

thus, u(Ez) pu(El) + (1-p) u(En) n

=P

(iv) Repeat step (iii) n-3 times with E2 replaced each time by E3, cees En—l

respectively; the value of p obtained for different Ei will generally
be different.

(v) At this step, a set of utilities for E .oy En has been determined.

1* Eo»
However, to provide cross checking on these values, one may start another

series of inquiry using u(El) and u(En_l) as the set of new reference

points and determine a new utility value for E,, namely u'(EZ), such that

2
indifference is achieved as follows:
p !
1.0
o E, ~ (1-p)

where u'(Ez) =p U(El) + (1-p) u(En-l)

P+ (1-p) u(E__))

1

1f the utility values are consistent, u'(EZ) should be equal to u(EZ)
as determined earlier in step (iii).

(vi) Repeat step (v) n-4 times with E2 replaced each time by E3, ceees B oo

respectively.

1f any inconsistencies are found in the above procedure, repeat the questioning process

until all utility values agree satisfactorily.

71




APPENDIX B: DETERMINATION OF UTILITY FUNCTION

A procedure for determining a utility function is as follows:

(i) Identify the range of valuesof the specific attribute covered by the
decision analysis.
(1i) Assign utility values of 1.0 and 0, respectively, to the utilities of
the two extremes.
(iii) The utility of an intermediate value of the attribute may be determined from
the value of X such that indifference is achieved by the decision maker

on the following lotteries:

‘ 0.5 x*
i 1.0
x ~
O 1 CI::::::::::;:;:::
*x

0.5u(X*) + 0.5 u(*X)

Hence, u(xl)

0.5x 1+ 0.5x0=0.5

]

where X* and *X are, respectively, the extreme values of the atributes

with wutilities 1.0 and 0, respectively.

(iv) Repeat step (iii) by replacing X* by X_; the utility of another value

1
of the attribute could be obtained from the following pair of indifferen

lotteries:

0.5 xl
1.0
? x ~
2 0.5
*x

Hence, u(X2) 0.5 u(Xl) + 0.5 u(*X)

0.5x0.5+0.5x0=20.25

(v) Repeat the above procedure by varying the values of the attribute on the
50-50 lottery, to obtain the utilities for other attribute values.
(vi) Plot the utility values as a function of the attribute value X, and fit
a curve through the set of points. The resultant curve is the utility i

function.
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